Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Lesego J. Moitsheki,* Susan A. Bourne and Luigi R. Nassimbeni

Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa

Correspondence e-mail:
mlesego@science.uct.ac.za

Key indicators

Single-crystal X-ray study
$T=113 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.027$
$w R$ factor $=0.068$
Data-to-parameter ratio $=13.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

catena-Poly[[bis(thiocyanato- κN)cobalt(II)]-di- μ-2-aminobenzonitrile- $\kappa^{2} N, N^{\prime}$]

Expected bond lengths (Allen et al., 1987) for $\mathrm{Co}-\mathrm{N}$ and $\mathrm{C}-\mathrm{C}$ are 1.97 and $1.40 \AA$, respectively. The $\mathrm{C} 11-\mathrm{C} 12$ bond length $[1.441$ (3) \AA] is longer than expected, owing to coordination of the cyano group to the central metal. Likewise, the $\mathrm{Co}-\mathrm{N}$ bond lengths are slightly elongated.

There are no conventional hydrogen bonds. A weak N5H5A . .S4 hydrogen-bonding interaction occurs, with a donor-acceptor distance of 3.67 (2) A. The geminal atom H5B is not involved in non-bonding interactions, presumably because the $\mathrm{N} 5-\mathrm{H} 5 B \cdots \mathrm{~S} 4$ angle is unfavourable.

Experimental

2-Aminobenzonitrile $(23.63 \mathrm{mg}, \quad 0.20 \mathrm{mmol})$ was dissolved in methanol (5 ml) and added to a methanolic solution (5 ml) of $\mathrm{Co}(\mathrm{NCS})_{2}(0.20 \mathrm{M})$. The mixture was heated to 338 K for about 15 min and then cooled to room temperature. Brown needles of (I) formed by slow evaporation within two weeks.

Crystal data

$\left[\mathrm{Cu}(\mathrm{NCS})_{2}\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{2}\right)_{2}\right]$
$M_{r}=411.37$
Monoclinic, C2/c
$a=22.088$ (4) A
$b=7.5560(15) \AA$
$c=11.152(2) \AA$
$\beta=113.56(3)^{\circ}$
$V=1706.1$ (7) \AA^{3}
$Z=4$

Data collection

Nonius KappaCCD area-detector diffractometer
ω and φ scans
Absorption correction: multi-scan (SADABS; Sheldrick, 2001) $T_{\text {min }}=0.805, T_{\max }=0.906$
10161 measured reflections

Refinement

Refinement on F^{2}

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.068$
$S=1.06$
1676 reflections
124 parameters
H atoms treated by a mixture of independent and constrained refinement
$D_{x}=1.602 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 13748 reflections
$\theta=1.0-26.0^{\circ}$
$\mu=1.26 \mathrm{~mm}^{-1}$
$T=113$ (2) K
Needle, brown
$0.18 \times 0.10 \times 0.08 \mathrm{~mm}$

1676 independent reflections
1432 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.057$
$\theta_{\text {max }}=26.0^{\circ}$
$h=-27 \rightarrow 26$
$k=-9 \rightarrow 9$
$l=-13 \rightarrow 13$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0344 P)^{2}\right. \\
& +0.4652 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \text { 。 } \\
& \Delta \rho_{\text {max }}=0.33 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\text {min }}=-0.49 \mathrm{e}^{-3}
\end{aligned}
$$

Extinction correction: SHELXL97 (Sheldrick, 1997)
Extinction coefficient: 0.0019 (4)

N -bound atoms H5A and H5B were located in a difference map and refined isotropically. The remaining H atoms were positioned geometrically, with $\mathrm{C}-\mathrm{H}=0.95 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski \& Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski \& Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997) and X-SEED (Barbour, 2001); molecular graphics: POV-RAY (Persistence of Vision Development Team, 1999); software used to prepare material for publication: SHELXL97.

We thank the National Research Fund (grant No. FA2004032500017), the University of Cape Town Research Committee and the CSIR (LJM) for financial support.

Figure 1
The molecular packing of (I), showing chains running parallel to [001].

Figure 2
A plot of (I), showing the atomic numbering scheme. Displacement ellipsoids are shown at the 70% probability level and H atoms have been omitted for clarity.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
Eddaoudi, M., Kim, J., Wachter, J. B., Chae, H. K., O'Keeffe, M. \& Yaghi, O. M. (2001). J. Am. Chem. Soc. 123, 4368-4369.

Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Noro, S., Kitangwa, S., Nakaruma, T. \& Wada, T. (2005). Inorg. Chem. 44, 3960-3971.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Persistence of Vision Development Team (1999). POV-RAY. Version 3.1e.watcom.win32. URL: http://www.povray.org/

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (2001). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.
Vujovic, D., Raubenheimer, H. G. \& Nassimbeni, L. R. (2003). Dalton Trans. pp. 631-637.
Vujovic, D., Raubenheimer, H. G. \& Nassimbeni, L. R. (2004). Eur. J. Inorg. Chem. pp. 2943-2949.
Ye, L. \& Wu, Y. (2005). Acta Cryst. E61, m1894-m1896.

